Combine CRF and MMSEG to Boost Chinese Word Segmentation in Social Media

نویسندگان

  • Yao Yushi
  • Huang Zheng
چکیده

In this paper, we propose a joint algorithm for the word segmentation on Chinese social media. Previous work mainly focus on word segmentation for plain Chinese text, in order to develop a Chinese social media processing tool, we need to take the main features of social media into account, whose grammatical structure is not rigorous, and the tendency of using colloquial and Internet terms makes the existing Chinese-processing tools inefficient to obtain good performance on social media. (Collobert et al., 2011) In our approach, we combine CRF and MMSEG algorithm and extend features of traditional CRF algorithm to train the model for word segmentation, We use Internet lexicon in order to improve the performance of our model on Chinese social media. Our experimental result on Sina Weibo shows that our approach outperforms the stateof-the-art model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Named Entity Recognition for Chinese Social Media with Word Segmentation Representation Learning

Named entity recognition, and other information extraction tasks, frequently use linguistic features such as part of speech tags or chunkings. For languages where word boundaries are not readily identified in text, word segmentation is a key first step to generating features for an NER system. While using word boundary tags as features are helpful, the signals that aid in identifying these boun...

متن کامل

A Simple and Effective Closed Test for Chinese Word Segmentation Based on Sequence Labeling

In many Chinese text processing tasks, Chinese word segmentation is a vital and required step. Various methods have been proposed to address this problem using machine learning algorithm in previous studies. In order to achieve high performance, many studies used external resources and combined with various machine learning algorithms to help segmentation. The goal of this paper is to construct...

متن کامل

Word Boundary Decision with CRF for Chinese Word Segmentation

Chinese word segmentation systems necessarily perform both accurately and quickly for real applications. In this paper, we study on word boundary decision (WBD) approach for Chinese word segmentation and implement it as a 2-tag character tagging with conditional random filed (CRF). With a help of tag transition features, WBD with CRF segmentation approach can achieve comparative performances co...

متن کامل

Improving Chinese Word Segmentation with Description Length Gain

Supervised and unsupervised learning has seldom joined with and thus lend strength to each other in the field of Chinese word segmentation (CWS). This paper presents a novel approach to CWS that utilizes description length gain (DLG), an empirical goodness measure for unsupervised word discovery, to enhance the segmentation performance of conditional random field (CRF) learning. Specifically, w...

متن کامل

Exploring Segment Representations for Neural Segmentation Models

Many natural language processing (NLP) tasks can be generalized into segmentation problem. In this paper, we combine semi-CRF with neural network to solve NLP segmentation tasks. Our model represents a segment both by composing the input units and embedding the entire segment. We thoroughly study different composition functions and different segment embeddings. We conduct extensive experiments ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1510.07099  شماره 

صفحات  -

تاریخ انتشار 2015